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A molecular orbital method is described which can be applied to molecules where the 
restrictions of z-electron theory are not fulfilled. I t  has the following main characteristics: 
1. Atomic SCF functions are used as a basis, 2. Core-valence interactions are treated by means 
of perturbation theory, 3. Mulliken type approximations are used for many-center integrals. 

Ein M. O. Verfahren ffir beliebige Molekiile mR 
t .  atomaren SCF-Funktionen als Basis, 
2. Behandlung der Weehselwirkung yon Rumpf und Valenzelektronen mittels St6rnngs- 

rechnung und 
3. Mulliken-N~herung fiir Mehrzentrenintegrale wird beschrieben. 

Description d'une m6thode d'orbitales mol6eulaires pouvant btre appliqu6e aux mol6cules 
ne satisfaisant pas aux restrictions de la th6orie des 61eetrons ~. Ses prineipales earact6ristiques 
sent: 1) les fonetions SCF atomiques sent utilisges comme base, 2) les interactions entre le 
coeur et les 61ectrons de valence sent trait6es par perturbation, 3) des approximations du type 
Mulliken sent utilis6es pour le cMcul des int6grales polycentriques. 

1. Introduction 

Molecular quantum mechanics has made great advances in recent years with 
the help of electronic computers. Ab initio calculations of the electronic structure 
of many  diatomic and some simple polyatomie molecules are now available and 
will be of increasing importance in the future. However, the amount  of labor 
involved for such a t rea tment  of many  chemically interesting molecules is for- 
bidding and makes simplifications necessary. In  many  cases even very crude 
approximations can give satisfactory answers to the chemist. For ~-eleetron 
systems the semiempirical molecular orbital methods named after I-I~CKEI, [7] 
and PA~ISE~, PA~R, and POPLE [19] have been especially fruitful, and several 
a t tempts  have been made to develop similar schemes for molecules of a more 
general type. 

The extended I-I~eKEL or WOT~FSBE~G-HELM~IOLZ approach [25] is partic- 
ularly simple and has given important  contributions to the theory of transition 
metal  complexes. However, its theoretical foundation is rather weak and when a 
more accurate method is needed it seems desirable to base it on the self-consistent 
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field method. Even this method in its non-empirical form has severe limitations, 
i.e. the neglect of electron correlation and the often very restricted set of basis 
orbitals employed. In  spite of this we will make the MO-LCAO-SCF approxima- 
tion our starting point and make further approximations and simplifications from 
there on leading to a scheme analogous to the Pariser-Parr-Pople method for 7~- 
electron systems. Since we want to be able to t reat  all kinds of molecules we cannot 
however make use of all simplifying assumptions in n-electron theory. Therefore 
our method is slightly more complex than  the Pariser-Parr-Pople method. Several 
other authors have followed sflnilar lines of thought. Two electron systems have 
been recently considered by  POHL and coworkers [21], KLOe~A~ [10], and JENKINS 
and IOEDLEY [8]. HART, ROBIN, and I~UEBLER [5] have used an approximate 
MO-LCAO-SCF method including overlap on the Pa molecule, but  with some 
approximations which are difficult to carry over to more general systems. Finally 
POPLE and eoworkers [22] and KAUF~mN [9] have developed methods making use 
of the zero-differential-overlap approximation. 

The method presented here differs from previous work in several ways. The 
general principle has been to avoid adjustable parameters  as far as possible. Atomic 
SCF-orbitals are used as basis functions and the eigenvaine relations fulfilled by  
these are used to simplify matr ix  elements of the Fock operators. This is an 
approach sinfilar to the GOEFPE~T-MAYE~-SKLAR approximation [3], which is 
obtained ff empirical ionization potentials are introduced for atomic orbital 
energies. The distinction between core and valence orbita]s is explicitly made and 
core-valence interactions arc discussed in terms of L6WDIN's partitioning approach 
to perturbat ion theory. Since we keep t rack of the inner shells, we are able to deal 
with elements belonging to the same group of the periodic table on an equivalent 
basis, and thereby retain more of classical chemical concepts. For the application 
of the method to large molecules, integral approximations of the Mulliken type 
are introduced and their invariancc properties discussed. 

2. Basis orbitals 

We choose as our atomic orbital basis analytical I tar t ree-Fock orbitals which, 
thanks to CLV, MENTI'S calculations [2], are now available for all atoms and positive 
ions with Z g  36. In  this way we have restricted our basis to only those orbitals 
which are occupied in the atomic ground states. Compared to a minimal basis of 
Slater orbitals, analytical atomic ]:[artree-Fock orbitals are more diffuse and give 
a bet ter  energy in ab initio calculations [1]. The opt imum orbitals obtained from 
molecuiar I-Iartree-Fock calculations seem to lie in between these two choices. 
Another advantage of Hartree-Fock orbitals over simple exponentials is tha t  
orbitals on one center are orthogonal to each other and are eigenfunctions to an 
effective t tamiltouian.  Molecular integrals are however more difficult to calculate, 
a disadvantage which can par t ly  be balanced by  means of integral approxima- 
tions. 

3. Formal development of theory 

For a single determinant  wavefunction all physical properties can be derived 
from the fit-st-order or Fock-Dirac density matr ix  

e(C, l) = ~ r r 
i 
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where the summat ion  extends  over  all occupied spinorbitals  in the de te rminant .  
The to ta l  energy is given b y  

= ~ ZgZh/Rgh  + f h I ~M(J-',l)dx 1 + E 
g<h 

+ 1 ~ [ 0 M ( t , I )  ~M(2,2) - -  0M(I ,2 )  ~M(2 , t ) ]  dx 1 dx~ (1) 

and the effective Hami l ton i an  or Fock  opera tor  b y  

FM = hl + ~ dx 2 _ L  (i -- P12) eM(2',2) �9 (2) ,) r12 

Here  h 1 = T 1 -- ~ Zg/rg~ is the sum of the one-particle kinetic energy opera tor  T 1 
a 

and nuclear  a t t rac t ions  Zg/rgi. We write the molecular  Fock-Dirac  densi ty  ma t r i x  
OM formal ly  as 

Q M = ~ 0 + ~ ' =  ~ . ~ + Q ' ,  (3) 
g 

where ~g is a dens i ty  funct ion associated with the isolated a tom g and  ~' a corree- 
t ion ~erm. For  closed shell a toms,  ~g ~ be the a tomic  Fock-Dirac  densi ty  mat r ix ,  
and  for open shell a toms,  a suitable average which will be discussed fur ther  in 
See. 5. I t  is fur ther  convenient  to introduce the to ta l  a tomic effective potent ia ls  

Ug = - Zg/rgl + ~ d x 2 ~  (J- - Pie) ~g (2',2) (4) 
J ?'12 

which permi ts  us to write the Foek  opera~or 

FM = T~ + ~, Ug + ~ dx~ ~ (l  -- P~2) ~'(2',2) 
g d '/'12 

= hM + j" dx 2 ~ (i  --  PI~) 0'(2',2) �9 (5) 
?'12 

For  the  to ta l  energy we first split ~M into ~0 and ~' and write 

E = E o + E '  (6) 

where E o contains all t e rms  independent  of ~', thus 

E o = ~ ZgZ~/R~ + ~ h~ eo(i ' , l )dxl  
g<h 

1 
+ ~ ~ ~ [e0(IA) e0(2,2) - e0(i,2) eo(2,i)] dx 1 dx~ (7) 

and  

E'  = hi  + - Oo(t,2)  xl x2 + 

1 1 
+ ~ f ~ [~ ' ( i , i )  ~'(2,2) -- ~'(1,2) ~'(2,1)] dxldx ~ 

1 t 
= f hMe'(i',Q dx 1 + ~ f ~  [~'(i,~) e'(2,2) -- e'(1,2) e ' (2,Q] dxldx ~ 

-- ~ f (hM + FM) e ' ( i ' , i )  dxl �9 

(s) 
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To the atomic densities ~g we associate atomic energies 

Eg = J" ( TI - Zg/rgl) ~g(l ' , l)  dx~ 

+ �89 / I [e ,( i , l )  Ca(2, 2) _ Ca(l,2 ) eg(2,t)] dx~dx2 (9) 
rl2 

and obtain 

g g<h rgl 

The various terms in these expressions can be given the following physical inter- 
pretation. Eg can be thought  of as the energy of an a tom in a "valence s ta te"  with 
the density matr ix  Oa- The difference between E a and the I-Iartree-Fock atomic 
ground state can either be calculated rigorously or estimated from the atomic 
spectrum. Since Eg is independent of other atoms it can be neglected in calcula- 
tions of bond angles and distances. The remaining terms in E 0 give the interactions 
between unperturbed atoms while E '  is the energy associated with the electron 
redistribution which gives the main contribution to the molecular binding energy. 

4. Matrix representation o~ the Foek operator 

As mentioned above, for closed shell atoms the atomic density function ~g is 
chosen to be the Fock-Dirac density matr ix  of the a tom in its ground state. With 
I ig} denoting an atomic SCF orbital i on center g we have the eigenvalue relation 

(T~ + ~g) [~g) = ~, jig) (~i) 

where s~g is the orbital energy. For open shell a toms a single determinant  does not 
in general fulfill the symmet ry  relations of the true wave function. The SCF ground 
state is therefore in this case represented by  a sum of determinants with given 
coefficients. The Foek operator is different for closed and open shells and contains 
further coupling terms between open and closed shell orbitais of the same sym- 
metry.  All these correction terms are here taken together into an operator Wg 
defined by  

(T1 + U,) rig) = (e~g + W,) ]@} 02) 
where sit is the open or closed shell orbital energy. 

Let  us now consider the matr ix  representation of FM. In  the chosen basis 
system, which is now treated as spin independent, we represent ~' by  the matr ix  
R '  = {R~z } and introduce the Mulliken notation for electron interaction integrals 

(ii I kz) = ~ i*(i) ~(1) ! k*(2) z(2) dv12 (23) 
r12 

where now the atomic indices have been suppressed. Using (22) we write the diag- 
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onal elements of the Fock operator as 

<~g [ F~  l ig> = ~. + <ig I wing> + Y <ig I us I ~g> + 
f e e  

+ y R~ [(~ I ~) - ~ (~ I~i)] �9 (~) 
kl 

The off-diagonal elements <ig ] FM []h> are divided into two groups, g = h, and 
g # h .  F o r g = h w e g e t  

+ ~ R~ [(i] I~) - } (i~ 1~)] (~5) 
kl 

and for g # h 

<ig FM ]h> = d~j(e~g + eja) + <ig ] Wg + W~ []h>- 

- <igl Tx ]ih> + ~ </gl Uf ] ]h> + 
I #g,h 

+ Z Ri~ [(i]]kl) - 1 (ik [/])] 
/c,l 

where z] ~j is the overlap integral <ig ] ~h>. 
The molecular orbitals are written in LCAO fo~n as 

J 

and the Hartree-Fock equations in matr ix  notation 

(FM-- a s~) cx = 0 ;~  = t, 2, 3 . . .  

where cx is the column vector {cj~}. 
future sections. 

(16) 

(i7) 

(18) 

The index ~ will frequently be suppressed in 

5. Approximate relations for open shell atoms 

I t  is convenient to let @g for an open shell a tom be the ground state charge 
distribution averaged over degenerate orbitals. Thus every orbital in an open shell 
is occupied by  the same fractional number of electrons with a and fi spin. Neglecting 
coupling terms which in general are small we have, following R o o T ~  [23], for 
the closed shell Fock operator 

Fc = T1 _ Z, + ~ dx2 t_ (1 - P12) ~ Pi 5*(2) r = T1 + Ua (19) 
rgl  flu i 

where the summation over i i~ over spin orbitals and Pi denotes the spin orbital 
average population. In  this approximation the W-operator is clearly given by  
W = F c -- F ~ I f  Ira> and ] k> arc open and closed shell SCF orbitals with the 
eigenvalue relations 

we have since <m [ k> = 0 

The open shell Fock operator is under the same assumptions 
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Z~_g (" 1 
Fo 

rlg J r12  �9 T 

where a~ and bi are constants which are equal to unity for closed shell orbitMs and 
depend on the atomic state for the open shell. A table of these constants for open s 
and p shells is given in I~OOT~AA~'S paper  [23]. The matr ix  element of the W a- 
operator between an arbi trary orbital i and an open shell orbital on a tom g is thus 
given by  

<i 1 We [mg> = ~ R~j [(t - ar (ira [jj) - �89 (i -- bj) (i] I/m)] (23) 
J 

where the summation is over open shell space orbitals on atom g and {Rqj} is the 
(diagonal) matr ix  representation of ~g. I-Iowever, since the coupling terms have 
been neglected the relation (22) is not necessarily fulfilled and will have to be 
imposed a priori. 

An alternative to this t rea tment  is to use eigcnfunctions of the operators T 1 § U a 
as basis orbitals. The I tartree-Fock-Slater  functions calculated by  HnRMA~ and 
St~ILLMA~ [6] belong to this category. They are however given in numerical form 
and will have to be approximated by  analytical expressions if conventional molec- 
ular integral programs are to be used. 

6. Separation of core and valence orbitals 

A solution of the full secular Eq. (i2) can always be achieved. Itowever,  it is 
well known tha t  the inner orbitals do not change very much when going from atom 
to molecule. We will make use of this fact and make a full variational calculation 
only for the outer or valence orbitals while we t reat  the core orbitals and the core- 
valence interactions by  means of perturbat ion theory. 

The core orbitals are localized near the nuclei, and interactions between cores 
on adjacent orbitals can be neglected in the first approximation due to small 
overlap integrals. The valence electrons are much more spread out and interact 
strongly with each other. One-center core-valence interactions are quite small 
owing to the orthogonality of basis orbitals on the same center, but  two.center 
interactions might be of some importance. Core orbitM energies m a y  however be 
quite different in atoms and molecules. Chemical effects in X-ray  spectra are quite 
small relatively speaking, but  represent nevertheless shifts of core orbital energies, 
sometimes of the order of 10 eV [4, 11]. That  these facts agree with our model can 
be seen in the following way. Of terms perturbing the core orbital energies (i4) the 
coulomb interactions ~ R~l(i i[kl  ) are the most  important .  Since ~' contains 
contributions almost exclusively from valence electrons, and the potential of a 
uniformly charged spherical shell is constant inside the shell, the spherical com- 
ponent of the perturbation will be more or less constant inside the core, i.e. it will 
not affect the form of the orbitals as much as their energies. The non-spherical 
components will cause a first order electrostatic splitting or broadening of inner- 
shell p-states in cases of low molecular symmetry ;  as long as this effect is small 
second order angular effects in 8-orbitals m a y  safely be ignored. Another conse- 
quence of a model with a core unaffected by  other than first order perturbations is 
tha t  if  there is more than  one inner shell the K shell energy changes most, a situa- 
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tion which is also confirmed by experimental evidence in the form of X-ray 
emission spectra [18]. 

In  the expression for the total energy, the core-valence electrostatic interactions 
can be attributed to either the core or the valence orbital energies. Therefore, if 
second and higher order core effects are neglected, only valence electron energies 
and wave functions need to be considered in a discussion of the chemical bond. 

7. Core-valence non-orthogonality and higher-order interactions 

With the atomic orbital basis system employed here there is a non-orthogonality 
between core and valence orbitals on different centers. This problem does not 
appear in ~-electron theory and has usually been ignored in previous approximate 
MO-LCAO theories. Here we will make use of a perturbation method leading to 
results similar to the pseudopotential introduced by P ~ , I P S  and KT,E~MAN [20] 

for the orthogonMized plane wave method of band calculations in solids. The 
scheme is quite general and can be applied even ff the requirements are not fulfilled 
for a first-order perturbation treatment of the core electrons. 

Fol lo~ng L6wD~ [16] we start from a system of linear equations written in 
matrix form 

M c = 0 .  (24)  

In  our case M = /z _ d E  where /7 is the matrix representation of the Fork ope- 
rator and Zl the overlap matrix. Dividing the basis functions into two groups a 
and b we write 

Man Ca -l- Mab cb = 0 

Moa  Ca -]- Moo co 0 . (25) 

From the second of these equations we solve for Cb = --  M[b 1 Moa ca and obtain 
the first equation as 

( M a a  - -  Mab Mbb 1 M b a )  ga = 0 .  (26) 

We now let a be the valence orbitals, b the core orbitals. Van = - Mab Mob 1 Mba 

is now the matrix representation of a pscudopotential V from the core orbitals. 
Its elements are 

Wi] = - -  Z (1'~iIr - -  Ailz  E )  [(/7bb - -  Z'iOb E)- i ]k /  (FI] --  AIJ E)  (27) 
k,l 

where i and j go over the valence orbitals and/c and 1 over the core orbitals. This 
index convention will be used in the remaining part of this section and will also be 
referred to in later sections. 

A solution of the reduced secular equations 

is rather cumbersome since Van is dependent on E, not to mention the fact t h a t / 7  
is dependent on c through the density matrix. I f  a solution of arbitrarily high 
accuracy were desired it would probably be easier to solve the original secular 
equations directly. However, the matrix Moo = F o b -  /Ibb E is almost diagonM 
due to the smallness of core-core interactions and we can evaluate its inverse by 
means of a series expansion 

M ~  1 ~ A - 1  - A - 1  B A  - 1  + A - 1  B A  - 1  B A  - I  - . . .  (29)  

where A = Mob -- B is diagonal. Furthermore, as discussed in the previous section 
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the core atomic orbitals are close approximations to the core molecular orbitals. We 
therefore introduce the notation 

Fl~ = At~ Fk~ + Gi~ (30) 
where G~ = 0 if 

FM Zk = Fk~ Zk . (3t) 

We will here t reat  only the lowest orders of the Brfllouin type perturbation expan- 
sion one gets from the series expansion of the matrix inverse (29). Again, if the 
series is slowly convergent it would be better to go back to the original secular 
equations. We obtain after some simple manipulations 

Vq) = - (Mab A M~)~j 

= -- ~ [ A ~  (Fk~ -- E)  A,~j + G ~  A,~ 1 + At,~ Ggt + (32) 
k 

V(2) (Mab A -1 B A  -1 Mba)ll i] = 

= ~ '  [A~(F~I - Akl E) A~j+ 
]r 

+ G~(F~t -- Akl E) A l l / ( F ~  - E) + (33) 

+ Alk(F~z -- Ak~ E) G~j/(Fu -- E) + 

+ Gt~(Fkt -- A~t E) G ~ / ( F ~  - E) (Fu -- E)] 

where the double sum ~ '  excludes/c = 1. The term - ~ Al~(F~k - E ) A k l  is the 
]r k 

P~rr~res and K L ~ r x ~  pseudopotential [20]. I f  the eigenvalue relation (31) is 
fulfilled it is the only non-vanishing term. From the computational point of view 
it is important  to have the pseudopotential as insensitive to errors in E as possible. 
For that  purpose we can collect all terms linear in E and include them in the over- 
lap matrix. With the notation 

V(a) Y (.1' E ~ A~ Ak] i j  ~ �9 ~ - -  
/,. 

i~ = - ~  + E ~ A ~ A ~ A ~  (34) 
and ~,t 

1.: k,1 

the secular equations (28) now become 

(Faa + Vaa - 5aa E) Ca = 0 (36) 

71aa is the overlap matr ix for the projected valence orbitals {Z~} with 

a.d  (37) 
k 

An equivalent procedure would be to start  by  orthogonalizing {g~} against {g~} 
and to partition subsequently. In  that  case integrals over the Foek operator are 
given by  

k l 

= .F~ I -- ~ (A~  F ~ A , ~  + A~e G,~i + G~,~A~) + (37a) 
k 

k , t  
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and 

<~/i I F [ Zl> = <Zr -- ~ Ar Ze I F I Z~> (37b) 
b 

= G i ~ -  ~ A ~ F e z .  
k r  

I f  one uses the inverse expansion (29) all terms with the same denominator will be 
of the same order. 

The operator l~ is still a function of E. We are however interested in E values 
only in the range of valence orbital energies. In the denominators (F~e -- E), E 
is thus a numerically small quantity compared to F ~  which is essentially a core 
orbital energy. I t  is also clear that  Akl E is numerically small compared to F ~  
where the leading terms are F~l ~ zJ~(e~ § e~) ~ A ~ ( F ~  -t- Fu). 

The Foek-Dirae density matrix formed from the occupied molecular orbitals 
in the partitioned representation becomes rather unwieldy if a higher accuracy is 
desired. The expansion of a set of normalized orbitals {r in the A0 basis {Z~} will 
be denoted 

r = ~ Z1 c3'~ (38) 
i 

with the orthonormalization condition 
$ c  

k,1 

where c~ stands for the column vector {c~}, k = l, 2 . . . .  The Fock-Dirac density 
matr ix is given by 

e ( l , t ' ) = 2  5 r 1 6 2  5 5 Z1tCJtZ~'c,,c~= 5zJRJ,~Z~ (40) 
iocc.  iocc. ],k y,k 

or in matrix notation 

i oct. 

The summation over i extends over all doubly occupied space orbitals. Since some 
of these belong to the core and others to the valence shell and since orbitals 
calculated from the partitioned secular equations (28) or (36) are in general not 
normalized to unity, the density matrix becomes quite difficult to evaluate. 

The summation over core orbitals can be eliminated in the following way. Let  
the space formed by the M linearly independent basis functions {Zl} be occupied 
by 2M electrons. An arbitrary orthonormal set of orbitals {~v~} can be constructed 
from {Zi} by means of the relation [12] 

q) = Z A-~/~ u .  (42) 

Here 9) and Z are the row matrices {~01, ~2 . . . .  ~0M} and {Z~, Z2 . . . .  ZM} respee- 
A-- ~= A-l, and is tively, and U is an arbitrary unitary matrix. A J h  fulfills A J h  ~/ 

assumed to be Itermitian. The density matrix formed from ~p is 

2 ~ q~ ~o* = 2 q) q)+ = 2 Z A-~/~ UU+ A - ' h  Z = 2 Z A-~ Z + (43)  
i 

o r  

R ~  = 2 A -~ . (44)  

The Fock-Dirae density matrix for the system can now be obtained by  means of 
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subtraction of the unoccupied orbitals from RM giving the result 

RM = 2(A-~ -- y c~ c + ) .  (45) 
i unoce. 

The summation over unoccupied orbitals is clearly not over core orbitals. For the 
further development we consider a basis of projected valence orbitals. In  this case 
A -1 is given by  

a_~ = { a 2  ooo~ (46) 

without any terms linking core and valence orbitals. We write 

= (Cia t (47) 
c~ \cib/ 

w h e r e  

ci~ = --  ~Fbb I Mba cta (48) 

in accordance with (25). The normalization integral becomes 

c+ a c = c + z l ~  c~ + cb + z l ~  cb 

= i + c + Mab M~ 1 Abb M ~  1 M~a ca (49) 

if  ca is normalized by c + Aaa Ca = 1. This normalization comes naturally from the 
solution of the partit ioned secular equation by  conventional matr ix  diagonalization 
methods and is identical to the intermediate normalization common in perturba- 
tion theory. 

As done previously for the Fock operator we can expand the matr ix  inverse 
M 3  ~ as a power series and insert the result in the density matrix.  These results 
seem however not to offer much simplification of the computations and will there- 
fore be omitted here. 

8. Approximate multieenter integrals 

Several approximation methods have been proposed for reducing time- 
consuming many-center  integrals to simple one- and two-center coulomb type 
integrals. In  ~-electron theory the zero-differential-overlap (ZDO) has been widely 
applied and Pol~Lw [22] has recently discussed some of its consequences for more 
general systems. The success of this approximation is usually coupled with the 
success of the Mulfiken approximation [17, 15] 

z~. z~ = A~j(z~ z~ + z~ z~)12. (50) 

I n  a symmet r i ca l l y  or thogonal ized basis [12] ~p ----- Z A - l h  one sees by  expand ing  

A-I /2 = ( I  + s ) - ' ~  = I - � 8 9  s + } s~ . . .  (51) 

tha t  the ZDO approximation ~l ~j = ~j  l i  Z~ is fulfilled to the first order of Alj. 
For large overlap integrals, however, higher order terms in the expansion (5i) 
might be of importance and it is doubtful how well the ZDO approximation works 
in such cases. In  this connection we will therefore discuss some approximations of 
the Mulliken type. 

PoPLn [22] found tha t  the ZDO approximation as customarily applied is not 
invariant  under transformations of the basis. Thus the calculated energy m a y  
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depend on how one chooses px, Py, and Pz orbitals. The same holds for the Mulliken 
approximation. Consider integTals of an operator V, which might be the potential 
from a nucleus or some kind of electronic charge distribution. The Mulliken 
approximation gives 

<Z~ 1 V [Z~> = (V ] ij) = Alj [(V [ii) + (V I ]j)]/2. (52) 

Let  U be a unitary transformation of the orbitals on center h, thus 

z~ ~ -- ~ z~ v ~ .  (53) 
J 

The condition for invariance of the Mulliken approximation is 

(V l/k ') = A/k, [(V [ ii) + (V I k'k')] where 

A~I~, = ~ A~j Uj~. (54) 
i 

From (52) and (53) we get however 

(V[ik ' )= Z ( V ] i j ) U j k = i  ~A~j[(V[ii)+(V[jj)]Uj~ (55) 
J i 

= �89 [A~,(V]ii) + ~Aij  Ujk(V [ i/)].  
i 

In  order to restore the invariance we therefore have to make a fm'ther approxima- 
tion, (Vii i)  = constant for all g~" This is equivalent to Pople's theory with 
complete neglect of differential overlap (CNDO). 

An approximation which is closely related to the Mulliken approximation and 
which is invariant under transformations of atomic orbitals on a particular center 
has been discussed by RVEI)Z~BE~G [24]. With a complete set of orthonormal 
orbitals on each center one can write without approximation 

l k 

= [Y. Z~ g~Az1 q- Z A~k Z~ Z~][ 2.  (56) 
t k 

Since the expressions are exact no invariance properties are destroyed so far. With 
truncated sets {Z~} and {Z~) invarianco is kept for transformations within the 
truncated sets. The most extreme truncation keeping only Z~ of {Z~} and Z~ of {Z~} 
gives the Mulliken approximation. 

With the Ruedenberg approximation electrostatic integrals are reduced to 
integrals of the type (V [ ia 7"a), where i and ~ may be different orbitals located on 
atom g. This approximation is clearly analogous to 1)oPLE's neglect of diatomic 
differential overlap (NDDO) approximation. 

A generalization of the Mulliken and l~uedenberg approximations has been 
given by  L6WDrN [13, 14]. Instead of the arithmetic mean of terms from both 
centers, a weighted mean con he employed to give the correct dipole moment of 
Z~ g~, along the internuclear axis, 

z~ z~ z E z~ z~ d,j + (l - ~) Z h = A,~  Zk Z~ �9 (57) 
l k 

I t  is to be noted, however, that  invariance is preserved only if 2 is a constant 
independent of the choice of a particular pair of orbitals on the two centers. 
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With the 1Vfulliken approximation several simplifications can be made in the 
calculation of matr ix  elements to the Fock operator. For the Coulomb integrals 
one gets 

= ~Ai~ [~ PkGki + ~, PkG,ej] (58) 
b,t 1r k 

where P~ = ~ Rul Az~ is the Mulliken gross population of gk and Gij = (it [ JJ)" 
l 

Exchange integrals give the following expressions 

.Rkz(il [ Icj) = ~ [(A R A)~jGil + ~ (,4 R)~,~G~Az~t + 
k, l  k 

+ ~A~ G~j(RA)~ + (zlQzl)~j] (59) 
k 

where Qii = R~j Gly. From the computational standpoint formulas like these are 
very convenient [1~]. By  calculating and storing matrices A R, A RA ,  A Q A  and the 
vector ~ P~ Gky first, and then evaluating the contributions to F one gets in the 

k 

computer program a max imum of three instead of four nested loops and a consi- 
derable t ime saving. 

The Mulliken approximation has another interesting feature in connection 
with the partitioning approach. I f  core-core overlap integrals are neglected there 
are no contributions from core orbitals to electron distributions formed from 
projected valence orbitals. With the notation of section 7 we have 

k l 

= ~ (A~ - ~ A~,~ A~j) (Z~ Z~ + Z~ Z~) (60) 
k 

- ~ A~(Z~ z~ + z~ z~). 
In  particular, for i = ?" we get 

which thus takes into account the different normalizations for the two sets of 
orbitals. 

9. Discuss ion 

A quantum mechanical approximation may be judged under the followiug 
criteria: I. mathematical rigor, 2. computational simplicity, and 3. agreement 
with experiment. The method presented here is a compromise between i. and 2. 
while no emphasis has been placed on 3. in the derivation of formula here. How to 
balance t. and 2. is to some extent  a mat te r  of personal taste and several alternative 
approaches are possible on the basis of present results. 

An excellent agreement with experiment could always be obtained if various 
quantitites are fitted to experimental  values as is done in the Pariser-Parr-Pople 
theory of conjugated hydrocarbons. However, in tha t  way some of the physical 
content of the SchrSdinger equation is lost and difficulties arise when total ly dif- 
ferent systems are to be treated. With no or few parameters,  our method seems 
to be of greatest importance where the experimental  information is scarce and ab 
initio calculations are too laborious. 
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App] ica t ions  are in progress  to  inorganic  ions a n d  molecules  wi th  sulfur or 
chlorine as the  centra l  a tom.  Promis ing  resul ts  have  been ob ta ined  for g round  s ta te  
p roper t ies  such as b o n d  angles and  charge d is t r ibut ions .  A de ta i l ed  account  will 
be given in  for thcoming papers .  
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